73.22.19 problem 31.7 (L)
Internal
problem
ID
[15575]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
31.
Delta
Functions.
Additional
Exercises.
page
572
Problem
number
:
31.7
(L)
Date
solved
:
Monday, March 31, 2025 at 01:41:33 PM
CAS
classification
:
[[_high_order, _linear, _nonhomogeneous]]
\begin{align*} y^{\prime \prime \prime \prime }-16 y&=\delta \left (t \right ) \end{align*}
Using Laplace method With initial conditions
\begin{align*} y \left (0\right )&=0\\ y^{\prime }\left (0\right )&=0\\ y^{\prime \prime }\left (0\right )&=0\\ y^{\prime \prime \prime }\left (0\right )&=0 \end{align*}
✓ Maple. Time used: 0.176 (sec). Leaf size: 17
ode:=diff(diff(diff(diff(y(t),t),t),t),t)-16*y(t) = Dirac(t);
ic:=y(0) = 0, D(y)(0) = 0, (D@@2)(y)(0) = 0, (D@@3)(y)(0) = 0;
dsolve([ode,ic],y(t),method='laplace');
\[
y = -\frac {\sin \left (2 t \right )}{16}+\frac {\sinh \left (2 t \right )}{16}
\]
✓ Mathematica. Time used: 0.023 (sec). Leaf size: 193
ode=D[y[t],{t,4}]-16*y[t]==DiracDelta[t];
ic={y[0]==0,Derivative[1][y][0] ==0,Derivative[2][y][0] ==0,Derivative[3][y][0]==0};
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
\[
y(t)\to \frac {1}{128} e^{-2 t} \left (-128 e^{4 t} \int _1^0\frac {\delta (K[1])}{32}dK[1]+128 e^{4 t} \int _1^t\frac {\delta (K[1])}{32}dK[1]+128 \int _1^t-\frac {\delta (K[2])}{32}dK[2]-128 e^{2 t} \sin (2 t) \int _1^0-\frac {\delta (K[3])}{16}dK[3]+128 e^{2 t} \sin (2 t) \int _1^t-\frac {\delta (K[3])}{16}dK[3]-128 \int _1^0-\frac {\delta (K[2])}{32}dK[2]-\delta ''(0)+\delta (0) e^{4 t}-2 \delta (0) e^{2 t} \cos (2 t)+\delta (0)+e^{4 t} \delta ''(0)-2 e^{2 t} \delta ''(0) \sin (2 t)\right )
\]
✓ Sympy. Time used: 2.255 (sec). Leaf size: 117
from sympy import *
t = symbols("t")
y = Function("y")
ode = Eq(-Dirac(t) - 16*y(t) + Derivative(y(t), (t, 4)),0)
ics = {y(0): 0, Subs(Derivative(y(t), t), t, 0): 0, Subs(Derivative(y(t), (t, 2)), t, 0): 0, Subs(Derivative(y(t), (t, 3)), t, 0): 0}
dsolve(ode,func=y(t),ics=ics)
\[
y{\left (t \right )} = \left (\frac {\int \operatorname {Dirac}{\left (t \right )} e^{- 2 t}\, dt}{32} - \frac {\int \limits ^{0} \operatorname {Dirac}{\left (t \right )} e^{- 2 t}\, dt}{32}\right ) e^{2 t} + \left (- \frac {\int \operatorname {Dirac}{\left (t \right )} e^{2 t}\, dt}{32} + \frac {\int \limits ^{0} \operatorname {Dirac}{\left (t \right )} e^{2 t}\, dt}{32}\right ) e^{- 2 t} + \left (\frac {\int \operatorname {Dirac}{\left (t \right )} \sin {\left (2 t \right )}\, dt}{16} - \frac {\int \limits ^{0} \operatorname {Dirac}{\left (t \right )} \sin {\left (2 t \right )}\, dt}{16}\right ) \cos {\left (2 t \right )} + \left (- \frac {\int \operatorname {Dirac}{\left (t \right )} \cos {\left (2 t \right )}\, dt}{16} + \frac {\int \limits ^{0} \operatorname {Dirac}{\left (t \right )} \cos {\left (2 t \right )}\, dt}{16}\right ) \sin {\left (2 t \right )}
\]