73.22.18 problem 31.7 (k)
Internal
problem
ID
[15574]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
31.
Delta
Functions.
Additional
Exercises.
page
572
Problem
number
:
31.7
(k)
Date
solved
:
Monday, March 31, 2025 at 01:41:31 PM
CAS
classification
:
[[_3rd_order, _missing_y]]
\begin{align*} y^{\prime \prime \prime }+9 y^{\prime }&=\delta \left (t -1\right ) \end{align*}
Using Laplace method With initial conditions
\begin{align*} y \left (0\right )&=0\\ y^{\prime }\left (0\right )&=0\\ y^{\prime \prime }\left (0\right )&=0 \end{align*}
✓ Maple. Time used: 0.122 (sec). Leaf size: 18
ode:=diff(diff(diff(y(t),t),t),t)+9*diff(y(t),t) = Dirac(t-1);
ic:=y(0) = 0, D(y)(0) = 0, (D@@2)(y)(0) = 0;
dsolve([ode,ic],y(t),method='laplace');
\[
y = -\frac {\operatorname {Heaviside}\left (t -1\right ) \left (-1+\cos \left (-3+3 t \right )\right )}{9}
\]
✓ Mathematica. Time used: 60.035 (sec). Leaf size: 224
ode=D[ y[t],{t,3}]+9*D[y[t],t]==DiracDelta[t-1];
ic={y[0]==0,Derivative[1][y][0] ==0,Derivative[2][y][0] ==0};
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
\[
y(t)\to \int _1^t\left (-\sin (3 K[3]) \int _1^0\frac {1}{3} \cos (3) \delta (K[2]-1)dK[2]+\sin (3 K[3]) \int _1^{K[3]}\frac {1}{3} \cos (3) \delta (K[2]-1)dK[2]-\cos (3 K[3]) \int _1^0-\frac {1}{3} \delta (K[1]-1) \sin (3)dK[1]+\cos (3 K[3]) \int _1^{K[3]}-\frac {1}{3} \delta (K[1]-1) \sin (3)dK[1]\right )dK[3]-\int _1^0\left (-\sin (3 K[3]) \int _1^0\frac {1}{3} \cos (3) \delta (K[2]-1)dK[2]+\sin (3 K[3]) \int _1^{K[3]}\frac {1}{3} \cos (3) \delta (K[2]-1)dK[2]-\cos (3 K[3]) \int _1^0-\frac {1}{3} \delta (K[1]-1) \sin (3)dK[1]+\cos (3 K[3]) \int _1^{K[3]}-\frac {1}{3} \delta (K[1]-1) \sin (3)dK[1]\right )dK[3]
\]
✓ Sympy. Time used: 1.174 (sec). Leaf size: 83
from sympy import *
t = symbols("t")
y = Function("y")
ode = Eq(-Dirac(t - 1) + 9*Derivative(y(t), t) + Derivative(y(t), (t, 3)),0)
ics = {y(0): 0, Subs(Derivative(y(t), t), t, 0): 0, Subs(Derivative(y(t), (t, 2)), t, 0): 0}
dsolve(ode,func=y(t),ics=ics)
\[
y{\left (t \right )} = \left (- \frac {\int \operatorname {Dirac}{\left (t - 1 \right )} \sin {\left (3 t \right )}\, dt}{9} + \frac {\int \limits ^{0} \operatorname {Dirac}{\left (t - 1 \right )} \sin {\left (3 t \right )}\, dt}{9}\right ) \sin {\left (3 t \right )} + \left (- \frac {\int \operatorname {Dirac}{\left (t - 1 \right )} \cos {\left (3 t \right )}\, dt}{9} + \frac {\int \limits ^{0} \operatorname {Dirac}{\left (t - 1 \right )} \cos {\left (3 t \right )}\, dt}{9}\right ) \cos {\left (3 t \right )} + \frac {\int \operatorname {Dirac}{\left (t - 1 \right )}\, dt}{9} - \frac {\int \limits ^{0} \operatorname {Dirac}{\left (t - 1 \right )}\, dt}{9}
\]