Internal
problem
ID
[617]
Book
:
Elementary
Differential
Equations.
By
C.
Henry
Edwards,
David
E.
Penney
and
David
Calvis.
6th
edition.
2008
Section
:
Chapter
5.
Linear
systems
of
differential
equations.
Section
5.3
(Matrices
and
linear
systems).
Problems
at
page
364
Problem
number
:
27
and
36
Date
solved
:
Saturday, March 29, 2025 at 05:00:49 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x__1(t),t) = x__2(t)+x__3(t), diff(x__2(t),t) = x__1(t)+x__3(t), diff(x__3(t),t) = x__1(t)+x__2(t)]; ic:=x__1(0) = 10x__2(0) = 12x__3(0) = -1; dsolve([ode,ic]);
ode={D[x1[t],t]==x2[t]+3*x3[t],D[x2[t],t]==x1[t]+x3[t],D[x3[t],t]==x1[t]+x2[t]}; ic={x1[0]==10,x2[0]==12,x3[0]==-1}; DSolve[{ode,ic},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") x__3 = Function("x__3") ode=[Eq(-x__2(t) - x__3(t) + Derivative(x__1(t), t),0),Eq(-x__1(t) - x__3(t) + Derivative(x__2(t), t),0),Eq(-x__1(t) - x__2(t) + Derivative(x__3(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t),x__3(t)],ics=ics)