Internal
problem
ID
[616]
Book
:
Elementary
Differential
Equations.
By
C.
Henry
Edwards,
David
E.
Penney
and
David
Calvis.
6th
edition.
2008
Section
:
Chapter
5.
Linear
systems
of
differential
equations.
Section
5.3
(Matrices
and
linear
systems).
Problems
at
page
364
Problem
number
:
26
and
35
Date
solved
:
Saturday, March 29, 2025 at 05:00:47 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x__1(t),t) = 3*x__1(t)-2*x__2(t), diff(x__2(t),t) = -x__1(t)+3*x__2(t)-2*x__3(t), diff(x__3(t),t) = -x__2(t)+3*x__3(t)]; ic:=x__1(0) = 0x__2(0) = 0x__3(0) = 4; dsolve([ode,ic]);
ode={D[x1[t],t]==3*x1[t]-2*x2[t],D[x2[t],t]==-x1[t]+3*x2[t]-2*x3[t],D[x3[t],t]==-x2[t]+3*x3[t]}; ic={x1[0]==0,x2[0]==0,x3[0]==4}; DSolve[{ode,ic},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") x__3 = Function("x__3") ode=[Eq(-3*x__1(t) + 2*x__2(t) + Derivative(x__1(t), t),0),Eq(x__1(t) - 3*x__2(t) + 2*x__3(t) + Derivative(x__2(t), t),0),Eq(x__2(t) - 3*x__3(t) + Derivative(x__3(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t),x__3(t)],ics=ics)