Internal
problem
ID
[15457]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
24.
Variation
of
parameters.
Additional
exercises
page
444
Problem
number
:
24.2
(b)
Date
solved
:
Monday, March 31, 2025 at 01:38:27 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
With initial conditions
ode:=diff(diff(y(x),x),x)-diff(y(x),x)-6*y(x) = 12*exp(2*x); ic:=y(0) = 0, D(y)(0) = 8; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],{x,2}]-D[y[x],x]-6*y[x]==12*Exp[2*x]; ic={y[0]==0,Derivative[1][y][0] ==8}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-6*y(x) - 12*exp(2*x) - Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {y(0): 0, Subs(Derivative(y(x), x), x, 0): 8} dsolve(ode,func=y(x),ics=ics)