Internal
problem
ID
[15456]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
24.
Variation
of
parameters.
Additional
exercises
page
444
Problem
number
:
24.2
(a)
Date
solved
:
Monday, March 31, 2025 at 01:38:24 PM
CAS
classification
:
[[_2nd_order, _exact, _linear, _nonhomogeneous]]
With initial conditions
ode:=x^2*diff(diff(y(x),x),x)-2*x*diff(y(x),x)-4*y(x) = 10/x; ic:=y(1) = 3, D(y)(1) = -15; dsolve([ode,ic],y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]-2*x*D[y[x],x]-4*y[x]==10/x; ic={y[1]==3,Derivative[1][y][1]==-15}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) - 2*x*Derivative(y(x), x) - 4*y(x) - 10/x,0) ics = {y(1): 3, Subs(Derivative(y(x), x), x, 1): -15} dsolve(ode,func=y(x),ics=ics)