Internal
problem
ID
[15449]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
24.
Variation
of
parameters.
Additional
exercises
page
444
Problem
number
:
24.1
(h)
Date
solved
:
Monday, March 31, 2025 at 01:38:08 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)-9*y(x) = 12*x^3; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+x*D[y[x],x]-9*y[x]==12*x^3; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-12*x**3 + x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) - 9*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)