73.16.7 problem 24.1 (g)

Internal problem ID [15448]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 24. Variation of parameters. Additional exercises page 444
Problem number : 24.1 (g)
Date solved : Monday, March 31, 2025 at 01:38:05 PM
CAS classification : [[_2nd_order, _exact, _linear, _nonhomogeneous]]

\begin{align*} x^{2} y^{\prime \prime }+x y^{\prime }-y&=\sqrt {x} \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 24
ode:=x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)-y(x) = x^(1/2); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {3 c_2 \,x^{2}-4 x^{{3}/{2}}+3 c_1}{3 x} \]
Mathematica. Time used: 0.019 (sec). Leaf size: 25
ode=x^2*D[y[x],{x,2}]+x*D[y[x],x]-y[x]==Sqrt[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to -\frac {4 \sqrt {x}}{3}+\frac {c_1}{x}+c_2 x \]
Sympy. Time used: 0.224 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-sqrt(x) + x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1}}{x} + C_{2} x - \frac {4 \sqrt {x}}{3} \]