Internal
problem
ID
[614]
Book
:
Elementary
Differential
Equations.
By
C.
Henry
Edwards,
David
E.
Penney
and
David
Calvis.
6th
edition.
2008
Section
:
Chapter
5.
Linear
systems
of
differential
equations.
Section
5.3
(Matrices
and
linear
systems).
Problems
at
page
364
Problem
number
:
24
and
33
Date
solved
:
Saturday, March 29, 2025 at 05:00:45 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x__1(t),t) = 4*x__1(t)+x__2(t), diff(x__2(t),t) = -2*x__1(t)+x__2(t)]; ic:=x__1(0) = 11x__2(0) = -7; dsolve([ode,ic]);
ode={D[x1[t],t]==4*x1[t]+x2[t],D[x2[t],t]==-2*x1[t]+x2[t]}; ic={x1[0]==11,x2[0]==-7}; DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") ode=[Eq(-4*x__1(t) - x__2(t) + Derivative(x__1(t), t),0),Eq(2*x__1(t) - x__2(t) + Derivative(x__2(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)