7.24.13 problem 23 and 32

Internal problem ID [613]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 5. Linear systems of differential equations. Section 5.3 (Matrices and linear systems). Problems at page 364
Problem number : 23 and 32
Date solved : Saturday, March 29, 2025 at 05:00:43 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x_{1} \left (t \right )&=3 x_{1} \left (t \right )-x_{2} \left (t \right )\\ \frac {d}{d t}x_{2} \left (t \right )&=5 x_{1} \left (t \right )-3 x_{2} \left (t \right ) \end{align*}

With initial conditions

\begin{align*} x_{1} \left (0\right ) = 5\\ x_{2} \left (0\right ) = -3 \end{align*}

Maple. Time used: 0.127 (sec). Leaf size: 33
ode:=[diff(x__1(t),t) = 3*x__1(t)-x__2(t), diff(x__2(t),t) = 5*x__1(t)-3*x__2(t)]; 
ic:=x__1(0) = 5x__2(0) = -3; 
dsolve([ode,ic]);
 
\begin{align*} x_{1} \left (t \right ) &= 7 \,{\mathrm e}^{2 t}-2 \,{\mathrm e}^{-2 t} \\ x_{2} \left (t \right ) &= 7 \,{\mathrm e}^{2 t}-10 \,{\mathrm e}^{-2 t} \\ \end{align*}
Mathematica. Time used: 0.004 (sec). Leaf size: 38
ode={D[x1[t],t]==3*x1[t]-x2[t],D[x2[t],t]==5*x1[t]-3*x2[t]}; 
ic={x1[0]==5,x2[0]==-3}; 
DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} \text {x1}(t)\to e^{-2 t} \left (7 e^{4 t}-2\right ) \\ \text {x2}(t)\to e^{-2 t} \left (7 e^{4 t}-10\right ) \\ \end{align*}
Sympy. Time used: 0.130 (sec). Leaf size: 32
from sympy import * 
t = symbols("t") 
x__1 = Function("x__1") 
x__2 = Function("x__2") 
ode=[Eq(-3*x__1(t) + x__2(t) + Derivative(x__1(t), t),0),Eq(-5*x__1(t) + 3*x__2(t) + Derivative(x__2(t), t),0)] 
ics = {} 
dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)
 
\[ \left [ x^{1}{\left (t \right )} = \frac {C_{1} e^{- 2 t}}{5} + C_{2} e^{2 t}, \ x^{2}{\left (t \right )} = C_{1} e^{- 2 t} + C_{2} e^{2 t}\right ] \]