7.24.11 problem 21

Internal problem ID [611]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 5. Linear systems of differential equations. Section 5.3 (Matrices and linear systems). Problems at page 364
Problem number : 21
Date solved : Saturday, March 29, 2025 at 05:00:41 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x_{1} \left (t \right )&=4 x_{1} \left (t \right )+2 x_{2} \left (t \right )\\ \frac {d}{d t}x_{2} \left (t \right )&=-3 x_{1} \left (t \right )-x_{2} \left (t \right ) \end{align*}

Maple. Time used: 0.110 (sec). Leaf size: 31
ode:=[diff(x__1(t),t) = 4*x__1(t)+2*x__2(t), diff(x__2(t),t) = -3*x__1(t)-x__2(t)]; 
dsolve(ode);
 
\begin{align*} x_{1} \left (t \right ) &= c_1 \,{\mathrm e}^{2 t}+c_2 \,{\mathrm e}^{t} \\ x_{2} \left (t \right ) &= -c_1 \,{\mathrm e}^{2 t}-\frac {3 c_2 \,{\mathrm e}^{t}}{2} \\ \end{align*}
Mathematica. Time used: 0.004 (sec). Leaf size: 56
ode={D[x1[t],t]==4*x1[t]+2*x2[t],D[x2[t],t]==-3*x1[t]-x2[t]}; 
ic={}; 
DSolve[{ode,ic},{x1[t],x2[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} \text {x1}(t)\to e^t \left (c_1 \left (3 e^t-2\right )+2 c_2 \left (e^t-1\right )\right ) \\ \text {x2}(t)\to e^t \left (c_2 \left (3-2 e^t\right )-3 c_1 \left (e^t-1\right )\right ) \\ \end{align*}
Sympy. Time used: 0.094 (sec). Leaf size: 32
from sympy import * 
t = symbols("t") 
x__1 = Function("x__1") 
x__2 = Function("x__2") 
ode=[Eq(-4*x__1(t) - 2*x__2(t) + Derivative(x__1(t), t),0),Eq(3*x__1(t) + x__2(t) + Derivative(x__2(t), t),0)] 
ics = {} 
dsolve(ode,func=[x__1(t),x__2(t)],ics=ics)
 
\[ \left [ x^{1}{\left (t \right )} = - \frac {2 C_{1} e^{t}}{3} - C_{2} e^{2 t}, \ x^{2}{\left (t \right )} = C_{1} e^{t} + C_{2} e^{2 t}\right ] \]