7.24.10 problem 20

Internal problem ID [610]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 5. Linear systems of differential equations. Section 5.3 (Matrices and linear systems). Problems at page 364
Problem number : 20
Date solved : Saturday, March 29, 2025 at 05:00:38 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x_{1} \left (t \right )&=x_{2} \left (t \right )+x_{3} \left (t \right )+1\\ \frac {d}{d t}x_{2} \left (t \right )&=x_{3} \left (t \right )+x_{4} \left (t \right )+t\\ \frac {d}{d t}x_{3} \left (t \right )&=x_{1} \left (t \right )+x_{4} \left (t \right )+t^{2}\\ \frac {d}{d t}x_{4} \left (t \right )&=x_{1} \left (t \right )+x_{2} \left (t \right )+t^{3} \end{align*}

Maple. Time used: 0.289 (sec). Leaf size: 272
ode:=[diff(x__1(t),t) = x__2(t)+x__3(t)+1, diff(x__2(t),t) = x__3(t)+x__4(t)+t, diff(x__3(t),t) = x__1(t)+x__4(t)+t^2, diff(x__4(t),t) = x__1(t)+x__2(t)+t^3]; 
dsolve(ode);
 
\begin{align*} x_{1} \left (t \right ) &= \frac {t^{2}}{16}-\frac {7 t^{3}}{24}-\frac {t^{4}}{16}+\frac {c_1 \,{\mathrm e}^{2 t}}{2}-\frac {11 t}{16}+c_4 +\frac {{\mathrm e}^{-t} \sin \left (t \right ) c_2}{2}-\frac {{\mathrm e}^{-t} \sin \left (t \right ) c_3}{2}-\frac {{\mathrm e}^{-t} \cos \left (t \right ) c_2}{2}-\frac {{\mathrm e}^{-t} \cos \left (t \right ) c_3}{2} \\ x_{2} \left (t \right ) &= \frac {t^{4}}{16}+\frac {{\mathrm e}^{-t} \sin \left (t \right ) c_2}{2}+\frac {{\mathrm e}^{-t} \sin \left (t \right ) c_3}{2}+\frac {{\mathrm e}^{-t} \cos \left (t \right ) c_2}{2}-\frac {{\mathrm e}^{-t} \cos \left (t \right ) c_3}{2}-\frac {11 t^{3}}{24}+\frac {c_1 \,{\mathrm e}^{2 t}}{2}+\frac {t^{2}}{16}-c_4 -\frac {3 t}{16}-\frac {19}{16} \\ x_{3} \left (t \right ) &= -\frac {t^{4}}{16}-\frac {{\mathrm e}^{-t} \sin \left (t \right ) c_2}{2}+\frac {{\mathrm e}^{-t} \sin \left (t \right ) c_3}{2}+\frac {{\mathrm e}^{-t} \cos \left (t \right ) c_2}{2}+\frac {{\mathrm e}^{-t} \cos \left (t \right ) c_3}{2}+\frac {5 t^{3}}{24}+\frac {c_1 \,{\mathrm e}^{2 t}}{2}-\frac {15 t^{2}}{16}+c_4 +\frac {5 t}{16}-\frac {1}{2} \\ x_{4} \left (t \right ) &= \frac {t^{4}}{16}-\frac {{\mathrm e}^{-t} \sin \left (t \right ) c_2}{2}-\frac {{\mathrm e}^{-t} \sin \left (t \right ) c_3}{2}-\frac {{\mathrm e}^{-t} \cos \left (t \right ) c_2}{2}+\frac {{\mathrm e}^{-t} \cos \left (t \right ) c_3}{2}+\frac {t^{3}}{24}+\frac {c_1 \,{\mathrm e}^{2 t}}{2}-\frac {7 t^{2}}{16}-c_4 -\frac {19 t}{16}+\frac {5}{16} \\ \end{align*}
Mathematica. Time used: 1.426 (sec). Leaf size: 442
ode={D[x1[t],t]==x2[t]+x3[t]+1,D[x2[t],t]==x3[t]+x4[t]+t,D[x3[t],t]==x1[t]+x4[t]+t^2,D[x4[t],t]==x1[t]+x2[t]+t^3}; 
ic={}; 
DSolve[{ode,ic},{x1[t],x2[t],x3[t],x4[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} \text {x1}(t)\to \frac {1}{96} e^{-t} \left (e^t \left (-6 t^4-28 t^3+6 t^2-66 t+3 \left (8 c_1 \left (e^{2 t}+1\right )+8 c_2 \left (e^{2 t}-1\right )+8 c_3 e^{2 t}+8 c_4 e^{2 t}-3+8 c_3-8 c_4\right )\right )+48 (c_1-c_3) \cos (t)+48 (c_2-c_4) \sin (t)\right ) \\ \text {x2}(t)\to \frac {1}{96} e^{-t} \left (e^t \left (6 t^4-44 t^3+6 t^2-18 t+3 \left (8 c_1 \left (e^{2 t}-1\right )+8 c_2 \left (e^{2 t}+1\right )+8 c_3 e^{2 t}+8 c_4 e^{2 t}-35-8 c_3+8 c_4\right )\right )+48 (c_2-c_4) \cos (t)-48 (c_1-c_3) \sin (t)\right ) \\ \text {x3}(t)\to \frac {1}{96} e^{-t} \left (e^t \left (-6 t^4+20 t^3-90 t^2+30 t+3 \left (8 c_1 \left (e^{2 t}+1\right )+8 c_2 \left (e^{2 t}-1\right )+8 c_3 e^{2 t}+8 c_4 e^{2 t}-19+8 c_3-8 c_4\right )\right )-48 (c_1-c_3) \cos (t)-48 (c_2-c_4) \sin (t)\right ) \\ \text {x4}(t)\to \frac {1}{96} e^{-t} \left (e^t \left (6 t^4+4 t^3-42 t^2-114 t+3 \left (8 c_1 \left (e^{2 t}-1\right )+8 c_2 \left (e^{2 t}+1\right )+8 c_3 e^{2 t}+8 c_4 e^{2 t}+13-8 c_3+8 c_4\right )\right )-48 (c_2-c_4) \cos (t)+48 (c_1-c_3) \sin (t)\right ) \\ \end{align*}
Sympy. Time used: 0.965 (sec). Leaf size: 507
from sympy import * 
t = symbols("t") 
x__1 = Function("x__1") 
x__2 = Function("x__2") 
x__3 = Function("x__3") 
x__4 = Function("x__4") 
ode=[Eq(-x__2(t) - x__3(t) + Derivative(x__1(t), t) - 1,0),Eq(-t - x__3(t) - x__4(t) + Derivative(x__2(t), t),0),Eq(-t**2 - x__1(t) - x__4(t) + Derivative(x__3(t), t),0),Eq(-t**3 - x__1(t) - x__2(t) + Derivative(x__4(t), t),0)] 
ics = {} 
dsolve(ode,func=[x__1(t),x__2(t),x__3(t),x__4(t)],ics=ics)
 
\[ \text {Solution too large to show} \]