7.17.16 problem 16 (b)
Internal
problem
ID
[529]
Book
:
Elementary
Differential
Equations.
By
C.
Henry
Edwards,
David
E.
Penney
and
David
Calvis.
6th
edition.
2008
Section
:
Chapter
3.
Power
series
methods.
Section
3.6
(Applications
of
Bessel
functions).
Problems
at
page
261
Problem
number
:
16
(b)
Date
solved
:
Saturday, March 29, 2025 at 04:55:57 PM
CAS
classification
:
[[_Riccati, _special]]
\begin{align*} y^{\prime }&=x^{2}+y^{2} \end{align*}
With initial conditions
\begin{align*} y \left (0\right )&=1 \end{align*}
✓ Maple. Time used: 0.459 (sec). Leaf size: 139
ode:=diff(y(x),x) = x^2+y(x)^2;
ic:=y(0) = 1;
dsolve([ode,ic],y(x), singsol=all);
\[
y = -\left (\left \{\begin {array}{cc} \frac {x \left (\operatorname {BesselJ}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right ) \left (\Gamma \left (\frac {3}{4}\right )^{2}+\pi \right )-\operatorname {BesselY}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right ) \Gamma \left (\frac {3}{4}\right )^{2}\right )}{\left (\Gamma \left (\frac {3}{4}\right )^{2}+\pi \right ) \operatorname {BesselJ}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )-\operatorname {BesselY}\left (\frac {1}{4}, \frac {x^{2}}{2}\right ) \Gamma \left (\frac {3}{4}\right )^{2}} & x <0 \\ -1 & x =0 \\ \frac {x \left (\operatorname {BesselJ}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right ) \left (-\Gamma \left (\frac {3}{4}\right )^{2}+\pi \right )+\operatorname {BesselY}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right ) \Gamma \left (\frac {3}{4}\right )^{2}\right )}{\operatorname {BesselY}\left (\frac {1}{4}, \frac {x^{2}}{2}\right ) \Gamma \left (\frac {3}{4}\right )^{2}+\left (-\Gamma \left (\frac {3}{4}\right )^{2}+\pi \right ) \operatorname {BesselJ}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )} & 0<x \end {array}\right .\right )
\]
✓ Mathematica. Time used: 0.211 (sec). Leaf size: 114
ode=D[y[x],x]==x^2+y[x]^2;
ic={y[0]==1};
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
\[
y(x)\to \frac {\operatorname {Gamma}\left (\frac {3}{4}\right ) \left (x^2 \operatorname {BesselJ}\left (-\frac {5}{4},\frac {x^2}{2}\right )-x^2 \operatorname {BesselJ}\left (\frac {3}{4},\frac {x^2}{2}\right )+\operatorname {BesselJ}\left (-\frac {1}{4},\frac {x^2}{2}\right )\right )-x^2 \operatorname {Gamma}\left (\frac {1}{4}\right ) \operatorname {BesselJ}\left (-\frac {3}{4},\frac {x^2}{2}\right )}{x \left (\operatorname {Gamma}\left (\frac {1}{4}\right ) \operatorname {BesselJ}\left (\frac {1}{4},\frac {x^2}{2}\right )-2 \operatorname {Gamma}\left (\frac {3}{4}\right ) \operatorname {BesselJ}\left (-\frac {1}{4},\frac {x^2}{2}\right )\right )}
\]
✗ Sympy
from sympy import *
x = symbols("x")
y = Function("y")
ode = Eq(-x**2 - y(x)**2 + Derivative(y(x), x),0)
ics = {y(0): 1}
dsolve(ode,func=y(x),ics=ics)
TypeError : bad operand type for unary -: list