7.17.15 problem 16 (a)

Internal problem ID [528]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 3. Power series methods. Section 3.6 (Applications of Bessel functions). Problems at page 261
Problem number : 16 (a)
Date solved : Saturday, March 29, 2025 at 04:55:54 PM
CAS classification : [[_Riccati, _special]]

\begin{align*} y^{\prime }&=x^{2}+y^{2} \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0 \end{align*}

Maple. Time used: 0.235 (sec). Leaf size: 43
ode:=diff(y(x),x) = x^2+y(x)^2; 
ic:=y(0) = 0; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = -\frac {x \left (\operatorname {BesselJ}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right )-\operatorname {BesselY}\left (-\frac {3}{4}, \frac {x^{2}}{2}\right )\right )}{\operatorname {BesselJ}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )-\operatorname {BesselY}\left (\frac {1}{4}, \frac {x^{2}}{2}\right )} \]
Mathematica. Time used: 0.304 (sec). Leaf size: 68
ode=D[y[x],x]==x^2+y[x]^2; 
ic={y[0]==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to -\frac {x^2 \operatorname {BesselJ}\left (-\frac {5}{4},\frac {x^2}{2}\right )-x^2 \operatorname {BesselJ}\left (\frac {3}{4},\frac {x^2}{2}\right )+\operatorname {BesselJ}\left (-\frac {1}{4},\frac {x^2}{2}\right )}{2 x \operatorname {BesselJ}\left (-\frac {1}{4},\frac {x^2}{2}\right )} \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2 - y(x)**2 + Derivative(y(x), x),0) 
ics = {y(0): 0} 
dsolve(ode,func=y(x),ics=ics)
 
TypeError : bad operand type for unary -: list