Internal
problem
ID
[14476]
Book
:
Ordinary
Differential
Equations
by
Charles
E.
Roberts,
Jr.
CRC
Press.
2010
Section
:
Chapter
5.
The
Laplace
Transform
Method.
Exercises
5.4,
page
265
Problem
number
:
4
(e)
Date
solved
:
Monday, March 31, 2025 at 12:28:05 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(y(x),x),x)+4*y(x) = piecewise(0 <= x and x < Pi,0,Pi <= x,-sin(3*x)); ic:=y(0) = 1, D(y)(0) = 1; dsolve([ode,ic],y(x),method='laplace');
ode=D[y[x],{x,2}]+4*y[x]==Piecewise[{ {0,0<=x<Pi},{Sin[3*(x-Pi)],x>=Pi}}]; ic={y[0]==1,Derivative[1][y][0] ==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-Piecewise((0, (x >= 0) & (x < pi)), (-sin(3*x), x >= pi)) + 4*y(x) + Derivative(y(x), (x, 2)),0) ics = {y(0): 1, Subs(Derivative(y(x), x), x, 0): 1} dsolve(ode,func=y(x),ics=ics)