Internal
problem
ID
[14475]
Book
:
Ordinary
Differential
Equations
by
Charles
E.
Roberts,
Jr.
CRC
Press.
2010
Section
:
Chapter
5.
The
Laplace
Transform
Method.
Exercises
5.4,
page
265
Problem
number
:
4
(d)
Date
solved
:
Monday, March 31, 2025 at 12:28:03 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(y(x),x),x)-2*diff(y(x),x)+y(x) = piecewise(0 <= x and x < 1,0,1 <= x,x^2-2*x+3); ic:=y(0) = 0, D(y)(0) = 1; dsolve([ode,ic],y(x),method='laplace');
ode=D[y[x],{x,2}]-2*D[y[x],x]+y[x]==Piecewise[{ {0,0<=x<1},{x^2-2*x+3,x>=1}}]; ic={y[0]==0,Derivative[1][y][0] ==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-Piecewise((0, (x >= 0) & (x < 1)), (x**2 - 2*x + 3, x >= 1)) + y(x) - 2*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {y(0): 0, Subs(Derivative(y(x), x), x, 0): 1} dsolve(ode,func=y(x),ics=ics)