Internal
problem
ID
[14082]
Book
:
Differential
Equations,
Linear,
Nonlinear,
Ordinary,
Partial.
A.C.
King,
J.Billingham,
S.R.Otto.
Cambridge
Univ.
Press
2003
Section
:
Chapter
3
Bessel
functions.
Problems
page
89
Problem
number
:
Problem
3.12
Date
solved
:
Monday, March 31, 2025 at 12:02:58 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)+(-nu^2+x^2)*y(x) = sin(x); dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+x*D[y[x],x]+(x^2-\[Nu]^2)*y[x]==Sin[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") nu = symbols("nu") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) + (-nu**2 + x**2)*y(x) - sin(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (nu**2*y(x) - x**2*(y(x) + Derivative(y(x), (x, 2))) + sin(x))/x cannot be solved by the factorable group method