68.2.7 problem Problem 3.7(g)

Internal problem ID [14081]
Book : Differential Equations, Linear, Nonlinear, Ordinary, Partial. A.C. King, J.Billingham, S.R.Otto. Cambridge Univ. Press 2003
Section : Chapter 3 Bessel functions. Problems page 89
Problem number : Problem 3.7(g)
Date solved : Monday, March 31, 2025 at 12:02:55 PM
CAS classification : [_Gegenbauer]

\begin{align*} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+n \left (n +1\right ) y&=0 \end{align*}

Maple. Time used: 0.018 (sec). Leaf size: 15
ode:=(-x^2+1)*diff(diff(y(x),x),x)-2*x*diff(y(x),x)+n*(n+1)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \operatorname {LegendreP}\left (n , x\right )+c_2 \operatorname {LegendreQ}\left (n , x\right ) \]
Mathematica. Time used: 0.027 (sec). Leaf size: 18
ode=(1-x^2)*D[y[x],{x,2}]-2*x*D[y[x],x]+n*(n+1)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_1 \operatorname {LegendreP}(n,x)+c_2 \operatorname {LegendreQ}(n,x) \]
Sympy
from sympy import * 
x = symbols("x") 
n = symbols("n") 
y = Function("y") 
ode = Eq(n*(n + 1)*y(x) - 2*x*Derivative(y(x), x) + (1 - x**2)*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False