Internal
problem
ID
[14053]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
8.3
Systems
of
Linear
Differential
Equations
(Variation
of
Parameters).
Problems
page
514
Problem
number
:
Problem
6(a)
Date
solved
:
Monday, March 31, 2025 at 12:01:30 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t) = -3*x(t)-3*y(t)+z(t), diff(y(t),t) = 2*y(t)+2*z(t)+29*exp(-t), diff(z(t),t) = 5*x(t)+y(t)+z(t)+39*exp(t)]; ic:=x(0) = 1y(0) = 2z(0) = 3; dsolve([ode,ic]);
ode={D[x[t],t]==-3*x[t]-3*y[t]+z[t],D[y[t],t]==2*y[t]+2*z[t]+29*Exp[-t],D[z[t],t]==5*x[t]+y[t]+z[t]+39*Exp[t]}; ic={x[0]==1,y[0]==2,z[0]==3}; DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
Too large to display
from sympy import * t = symbols("t") x = Function("x") y = Function("y") z = Function("z") ode=[Eq(3*x(t) + 3*y(t) - z(t) + Derivative(x(t), t),0),Eq(-2*y(t) - 2*z(t) + Derivative(y(t), t) - 29*exp(-t),0),Eq(-5*x(t) - y(t) - z(t) - 39*exp(t) + Derivative(z(t), t),0)] ics = {x(0): 1, y(0): 2, z(0): 3} dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)
OverflowError : mpz too large to convert to float