Internal
problem
ID
[14052]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
8.3
Systems
of
Linear
Differential
Equations
(Variation
of
Parameters).
Problems
page
514
Problem
number
:
Problem
5(d)
Date
solved
:
Monday, March 31, 2025 at 12:01:28 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t) = -7*x(t)+4*y(t)+6*exp(3*t), diff(y(t),t) = -5*x(t)+2*y(t)+6*exp(2*t)]; ic:=x(0) = 1y(0) = -1; dsolve([ode,ic]);
ode={D[x[t],t]==-7*x[t]+4*y[t]+6*Exp[3*t],D[y[t],t]==-5*x[t]+2*y[t]+6*Exp[2*t]}; ic={x[0]==1,y[0]==-1}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(7*x(t) - 4*y(t) - 6*exp(3*t) + Derivative(x(t), t),0),Eq(5*x(t) - 2*y(t) - 6*exp(2*t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)