67.7.9 problem Problem 5(a)
Internal
problem
ID
[14049]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
8.3
Systems
of
Linear
Differential
Equations
(Variation
of
Parameters).
Problems
page
514
Problem
number
:
Problem
5(a)
Date
solved
:
Monday, March 31, 2025 at 08:23:00 AM
CAS
classification
:
system_of_ODEs
\begin{align*} \frac {d}{d t}x \left (t \right )&=7 x \left (t \right )+y \left (t \right )-1-6 \,{\mathrm e}^{t}\\ \frac {d}{d t}y \left (t \right )&=-4 x \left (t \right )+3 y \left (t \right )+4 \,{\mathrm e}^{t}-3 \end{align*}
With initial conditions
\begin{align*} x \left (0\right ) = 1\\ y \left (0\right ) = -1 \end{align*}
✓ Maple. Time used: 0.153 (sec). Leaf size: 30
ode:=[diff(x(t),t) = 7*x(t)+y(t)-1-6*exp(t), diff(y(t),t) = -4*x(t)+3*y(t)+4*exp(t)-3];
ic:=x(0) = 1y(0) = -1;
dsolve([ode,ic]);
\begin{align*}
x \left (t \right ) &= -2 \,{\mathrm e}^{5 t} t +{\mathrm e}^{t} \\
y \left (t \right ) &= 1-{\mathrm e}^{5 t} \left (-4 t +2\right ) \\
\end{align*}
✓ Mathematica. Time used: 0.229 (sec). Leaf size: 368
ode={D[x[t],t]==7*x[t]+y[t]-1-Exp[t],D[y[t],t]==-4*x[t]+3*y[t]+4*Exp[t]-3};
ic={x[0]==1,y[0]==-1};
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
\begin{align*}
x(t)\to e^{5 t} \left (t \left (-\int _1^0e^{-5 K[2]} \left (-10 K[2]+4 e^{K[2]} (K[2]+1)-3\right )dK[2]\right )+t \int _1^te^{-5 K[2]} \left (-10 K[2]+4 e^{K[2]} (K[2]+1)-3\right )dK[2]-(2 t+1) \int _1^0e^{-5 K[1]} \left (5 K[1]-e^{K[1]} (2 K[1]+1)-1\right )dK[1]+(2 t+1) \int _1^te^{-5 K[1]} \left (5 K[1]-e^{K[1]} (2 K[1]+1)-1\right )dK[1]+t+1\right ) \\
y(t)\to e^{5 t} \left (4 t \int _1^0e^{-5 K[1]} \left (5 K[1]-e^{K[1]} (2 K[1]+1)-1\right )dK[1]-4 t \int _1^te^{-5 K[1]} \left (5 K[1]-e^{K[1]} (2 K[1]+1)-1\right )dK[1]+2 t \int _1^0e^{-5 K[2]} \left (-10 K[2]+4 e^{K[2]} (K[2]+1)-3\right )dK[2]-2 t \int _1^te^{-5 K[2]} \left (-10 K[2]+4 e^{K[2]} (K[2]+1)-3\right )dK[2]+\int _1^te^{-5 K[2]} \left (-10 K[2]+4 e^{K[2]} (K[2]+1)-3\right )dK[2]-\int _1^0e^{-5 K[2]} \left (-10 K[2]+4 e^{K[2]} (K[2]+1)-3\right )dK[2]-2 t-1\right ) \\
\end{align*}
✓ Sympy. Time used: 0.274 (sec). Leaf size: 48
from sympy import *
t = symbols("t")
x = Function("x")
y = Function("y")
ode=[Eq(-7*x(t) - y(t) + 6*exp(t) + Derivative(x(t), t) + 1,0),Eq(4*x(t) - 3*y(t) - 4*exp(t) + Derivative(y(t), t) + 3,0)]
ics = {}
dsolve(ode,func=[x(t),y(t)],ics=ics)
\[
\left [ x{\left (t \right )} = 2 C_{1} t e^{5 t} + \left (C_{1} + 2 C_{2}\right ) e^{5 t} + e^{t}, \ y{\left (t \right )} = - 4 C_{1} t e^{5 t} - 4 C_{2} e^{5 t} + 1\right ]
\]