Internal
problem
ID
[14048]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
8.3
Systems
of
Linear
Differential
Equations
(Variation
of
Parameters).
Problems
page
514
Problem
number
:
Problem
4(d)
Date
solved
:
Monday, March 31, 2025 at 08:22:58 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = 3*x(t)-2*y(t)+3*z(t), diff(y(t),t) = x(t)-y(t)+2*z(t)+2*exp(-t), diff(z(t),t) = -2*x(t)+2*y(t)-2*z(t)]; dsolve(ode);
ode={D[x[t],t]==3*x[t]-2*y[t]+3*z[t],D[y[t],t]==x[t]-y[t]+2*z[t]+2*Exp[-t],D[z[t],t]==-2*x[t]+2*y[t]-2*z[t]}; ic={}; DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") z = Function("z") ode=[Eq(-3*x(t) + 2*y(t) - 3*z(t) + Derivative(x(t), t),0),Eq(-x(t) + y(t) - 2*z(t) + Derivative(y(t), t) - 2*exp(-t),0),Eq(2*x(t) - 2*y(t) + 2*z(t) + Derivative(z(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)