Internal
problem
ID
[14017]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
6.
Introduction
to
Systems
of
ODEs.
Problems
page
408
Problem
number
:
Problem
1(b)
Date
solved
:
Monday, March 31, 2025 at 08:22:07 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=t^2*diff(diff(y(t),t),t)-6*t*diff(y(t),t)+sin(2*t)*y(t) = ln(t); dsolve(ode,y(t), singsol=all);
ode=t^2*D[y[t],{t,2}]-6*t*D[y[t],t]+Sin[2*t]*y[t]==Log[t]; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
Not solved
from sympy import * t = symbols("t") y = Function("y") ode = Eq(t**2*Derivative(y(t), (t, 2)) - 6*t*Derivative(y(t), t) + y(t)*sin(2*t) - log(t),0) ics = {} dsolve(ode,func=y(t),ics=ics)
NotImplementedError : The given ODE Derivative(y(t), t) - (t**2*Derivative(y(t), (t, 2)) + y(t)*sin(2*t) - log(t))/(6*t) cannot be solved by the factorable group method