Internal
problem
ID
[14016]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
6.
Introduction
to
Systems
of
ODEs.
Problems
page
408
Problem
number
:
Problem
1(a)
Date
solved
:
Monday, March 31, 2025 at 08:22:05 AM
CAS
classification
:
[[_2nd_order, _exact, _linear, _nonhomogeneous]]
ode:=t^2*diff(diff(y(t),t),t)+3*t*diff(y(t),t)+y(t) = t^7; dsolve(ode,y(t), singsol=all);
ode=t^2*D[y[t],{t,2}]+3*t*D[y[t],t]+y[t]==t^7; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-t**7 + t**2*Derivative(y(t), (t, 2)) + 3*t*Derivative(y(t), t) + y(t),0) ics = {} dsolve(ode,func=y(t),ics=ics)