Internal
problem
ID
[14013]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
5.6
Laplace
transform.
Nonhomogeneous
equations.
Problems
page
368
Problem
number
:
Problem
13(d)
Date
solved
:
Monday, March 31, 2025 at 08:21:50 AM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
Using Laplace method With initial conditions
ode:=diff(diff(diff(y(t),t),t),t)-5*diff(diff(y(t),t),t)+diff(y(t),t)-y(t) = -t^2+2*t-10; ic:=y(0) = 2, D(y)(0) = 0, (D@@2)(y)(0) = 0; dsolve([ode,ic],y(t),method='laplace');
ode=D[ y[t],{t,3}]-5*D[y[t],{t,2}]+D[y[t],t]-y[t]==2*t-10-t^2; ic={y[0]==2,Derivative[1][y][0] ==0,Derivative[2][y][0] ==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(t**2 - 2*t - y(t) + Derivative(y(t), t) - 5*Derivative(y(t), (t, 2)) + Derivative(y(t), (t, 3)) + 10,0) ics = {y(0): 2, Subs(Derivative(y(t), t), t, 0): 0, Subs(Derivative(y(t), (t, 2)), t, 0): 0} dsolve(ode,func=y(t),ics=ics)
Timed Out