Internal
problem
ID
[14012]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
5.6
Laplace
transform.
Nonhomogeneous
equations.
Problems
page
368
Problem
number
:
Problem
13(c)
Date
solved
:
Monday, March 31, 2025 at 08:21:49 AM
CAS
classification
:
[[_3rd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(diff(y(t),t),t),t)-diff(diff(y(t),t),t)+4*diff(y(t),t)-4*y(t) = 8*exp(2*t)-5*exp(t); ic:=y(0) = 2, D(y)(0) = 0, (D@@2)(y)(0) = 3; dsolve([ode,ic],y(t),method='laplace');
ode=D[ y[t],{t,3}]-D[y[t],{t,2}]+4*D[y[t],t]-4*y[t]==8*Exp[2*t]-5*Exp[t]; ic={y[0]==2,Derivative[1][y][0] ==0,Derivative[2][y][0] ==3}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-4*y(t) - 8*exp(2*t) + 5*exp(t) + 4*Derivative(y(t), t) - Derivative(y(t), (t, 2)) + Derivative(y(t), (t, 3)),0) ics = {y(0): 2, Subs(Derivative(y(t), t), t, 0): 0, Subs(Derivative(y(t), (t, 2)), t, 0): 3} dsolve(ode,func=y(t),ics=ics)