67.2.41 problem Problem 18(f)

Internal problem ID [13927]
Book : APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Dobrushkin. CRC Press 2015
Section : Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221
Problem number : Problem 18(f)
Date solved : Monday, March 31, 2025 at 08:18:20 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }+x^{2} y^{\prime }+2 \left (1-x \right ) y&=0 \end{align*}

Maple. Time used: 0.064 (sec). Leaf size: 88
ode:=x^2*diff(diff(y(x),x),x)+x^2*diff(y(x),x)+2*(1-x)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{-\frac {x}{2}} \sqrt {x}\, \left (c_1 x \left (x +2\right ) \operatorname {BesselI}\left (\frac {i \sqrt {7}}{2}+1, \frac {x}{2}\right )-x c_2 \left (x +2\right ) \operatorname {BesselK}\left (\frac {i \sqrt {7}}{2}+1, \frac {x}{2}\right )+\left (\operatorname {BesselI}\left (\frac {i \sqrt {7}}{2}, \frac {x}{2}\right ) c_1 +\operatorname {BesselK}\left (\frac {i \sqrt {7}}{2}, \frac {x}{2}\right ) c_2 \right ) \left (-2+i \left (x +2\right ) \sqrt {7}+x^{2}+3 x \right )\right ) \]
Mathematica. Time used: 0.17 (sec). Leaf size: 99
ode=x^2*D[y[x],{x,2}]+x^2*D[y[x],x]+2*(1-x)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \left (c_1 \operatorname {HypergeometricU}\left (\frac {5}{2}+\frac {i \sqrt {7}}{2},1+i \sqrt {7},x\right )+c_2 L_{-\frac {1}{2} i \left (-5 i+\sqrt {7}\right )}^{i \sqrt {7}}(x)\right ) \exp \left (\int _1^x\frac {-2 K[1]+i \sqrt {7}+1}{2 K[1]}dK[1]\right ) \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), x) + x**2*Derivative(y(x), (x, 2)) + (2 - 2*x)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
ValueError : Expected Expr or iterable but got None