Internal
problem
ID
[13926]
Book
:
APPLIED
DIFFERENTIAL
EQUATIONS
The
Primary
Course
by
Vladimir
A.
Dobrushkin.
CRC
Press
2015
Section
:
Chapter
4,
Second
and
Higher
Order
Linear
Differential
Equations.
Problems
page
221
Problem
number
:
Problem
18(e)
Date
solved
:
Monday, March 31, 2025 at 08:18:19 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)+4*x*diff(y(x),x)+(4*x^2+2)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+4*x*D[y[x],x]+(2+4*x^2)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*x*Derivative(y(x), x) + (4*x**2 + 2)*y(x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False