64.23.7 problem 9

Internal problem ID [13613]
Book : Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.
Section : Chapter 12, Sturm-Liouville problems. Section 12.1, Exercises page 596
Problem number : 9
Date solved : Monday, March 31, 2025 at 08:02:45 AM
CAS classification : [[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} 2 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime }+\frac {\lambda y}{x^{2}+1}&=0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0\\ y \left (1\right )&=0 \end{align*}

Maple. Time used: 0.018 (sec). Leaf size: 5
ode:=2*x*diff(y(x),x)+(x^2+1)*diff(diff(y(x),x),x)+lambda/(x^2+1)*y(x) = 0; 
ic:=y(0) = 0, y(1) = 0; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = 0 \]
Mathematica. Time used: 1.126 (sec). Leaf size: 322
ode=D[(x^2+1)*D[y[x],x],x]+\[Lambda]/(x^2+1)*y[x]==0; 
ic={y[0]==0,y[1]==0}; 
DSolve[{ode,ic},{y[x]},x,IncludeSingularSolutions->True]
 
\[ y(x)\to \begin {array}{cc} \{ & \begin {array}{cc} -\frac {\exp \left (\int _1^x\frac {\unicode {f80d}+i \sqrt {\lambda }}{\unicode {f80d}^2+1}d\unicode {f80d}\right ) c_1 \left (\int _1^0\exp \left (-2 \int _1^{K[2]}\frac {\unicode {f80d}+i \sqrt {\lambda }}{\unicode {f80d}^2+1}d\unicode {f80d}\right )dK[2]-\int _1^x\exp \left (-2 \int _1^{K[2]}\frac {\unicode {f80d}+i \sqrt {\lambda }}{\unicode {f80d}^2+1}d\unicode {f80d}\right )dK[2]\right )}{\sqrt {x^2+1}} & \frac {\exp \left (\int _1^0\frac {\unicode {f80d}+i \sqrt {\lambda }}{\unicode {f80d}^2+1}d\unicode {f80d}+\int _1^1\frac {\unicode {f80d}+i \sqrt {\lambda }}{\unicode {f80d}^2+1}d\unicode {f80d}\right ) \int _1^1\exp \left (-2 \int _1^{K[2]}\frac {\unicode {f80d}+i \sqrt {\lambda }}{\unicode {f80d}^2+1}d\unicode {f80d}\right )dK[2]}{\sqrt {2}}-\frac {\exp \left (\int _1^0\frac {\unicode {f80d}+i \sqrt {\lambda }}{\unicode {f80d}^2+1}d\unicode {f80d}+\int _1^1\frac {\unicode {f80d}+i \sqrt {\lambda }}{\unicode {f80d}^2+1}d\unicode {f80d}\right ) \int _1^0\exp \left (-2 \int _1^{K[2]}\frac {\unicode {f80d}+i \sqrt {\lambda }}{\unicode {f80d}^2+1}d\unicode {f80d}\right )dK[2]}{\sqrt {2}}=0 \\ 0 & \text {True} \\ \end {array} \\ \end {array} \]
Sympy
from sympy import * 
x = symbols("x") 
lambda_ = symbols("lambda_") 
y = Function("y") 
ode = Eq(lambda_*y(x)/(x**2 + 1) + 2*x*Derivative(y(x), x) + (x**2 + 1)*Derivative(y(x), (x, 2)),0) 
ics = {y(0): 0, y(1): 0} 
dsolve(ode,func=y(x),ics=ics)
 
ValueError : Couldnt solve for initial conditions