Internal
problem
ID
[13612]
Book
:
Differential
Equations
by
Shepley
L.
Ross.
Third
edition.
John
Willey.
New
Delhi.
2004.
Section
:
Chapter
12,
Sturm-Liouville
problems.
Section
12.1,
Exercises
page
596
Problem
number
:
8
Date
solved
:
Monday, March 31, 2025 at 08:02:42 AM
CAS
classification
:
[[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
With initial conditions
ode:=diff(y(x),x)+x*diff(diff(y(x),x),x)+lambda/x*y(x) = 0; ic:=y(1) = 0, D(y)(exp(Pi)) = 0; dsolve([ode,ic],y(x), singsol=all);
ode=D[x*D[y[x],x],x]+\[Lambda]/x*y[x]==0; ic={y[1]==0,Derivative[1][y][Exp[Pi]]==0}; DSolve[{ode,ic},{y[x]},x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") lambda_ = symbols("lambda_") y = Function("y") ode = Eq(lambda_*y(x)/x + x*Derivative(y(x), (x, 2)) + Derivative(y(x), x),0) ics = {y(1): 0, Subs(Derivative(y(x), x), x, exp(pi)): 0} dsolve(ode,func=y(x),ics=ics)