Internal
problem
ID
[13603]
Book
:
Differential
Equations
by
Shepley
L.
Ross.
Third
edition.
John
Willey.
New
Delhi.
2004.
Section
:
Chapter
11,
The
nth
order
homogeneous
linear
differential
equation.
Section
11.8,
Exercises
page
583
Problem
number
:
4(b)
Date
solved
:
Monday, March 31, 2025 at 08:02:24 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(t^4+t^2)*diff(diff(x(t),t),t)+2*t^3*diff(x(t),t)+3*x(t) = 0; dsolve(ode,x(t), singsol=all);
ode=(t^4+t^2)*D[x[t],{t,2}]+2*t^3*D[x[t],t]+3*x[t]==0; ic={}; DSolve[{ode,ic},{x[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") ode = Eq(2*t**3*Derivative(x(t), t) + (t**4 + t**2)*Derivative(x(t), (t, 2)) + 3*x(t),0) ics = {} dsolve(ode,func=x(t),ics=ics)
ValueError : Expected Expr or iterable but got None