64.22.8 problem 4(a)

Internal problem ID [13602]
Book : Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.
Section : Chapter 11, The nth order homogeneous linear differential equation. Section 11.8, Exercises page 583
Problem number : 4(a)
Date solved : Monday, March 31, 2025 at 08:02:22 AM
CAS classification : [[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} t^{2} x^{\prime \prime }+t x^{\prime }+x&=0 \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 15
ode:=t^2*diff(diff(x(t),t),t)+t*diff(x(t),t)+x(t) = 0; 
dsolve(ode,x(t), singsol=all);
 
\[ x = c_1 \sin \left (\ln \left (t \right )\right )+c_2 \cos \left (\ln \left (t \right )\right ) \]
Mathematica. Time used: 0.017 (sec). Leaf size: 18
ode=t^2*D[x[t],{t,2}]+t*D[x[t],t]+x[t]==0; 
ic={}; 
DSolve[{ode,ic},{x[t]},t,IncludeSingularSolutions->True]
 
\[ x(t)\to c_1 \cos (\log (t))+c_2 \sin (\log (t)) \]
Sympy. Time used: 0.180 (sec). Leaf size: 15
from sympy import * 
t = symbols("t") 
x = Function("x") 
ode = Eq(t**2*Derivative(x(t), (t, 2)) + t*Derivative(x(t), t) + x(t),0) 
ics = {} 
dsolve(ode,func=x(t),ics=ics)
 
\[ x{\left (t \right )} = C_{1} \sin {\left (\log {\left (t \right )} \right )} + C_{2} \cos {\left (\log {\left (t \right )} \right )} \]