Internal
problem
ID
[13588]
Book
:
Differential
Equations
by
Shepley
L.
Ross.
Third
edition.
John
Willey.
New
Delhi.
2004.
Section
:
Chapter
9,
The
Laplace
transform.
Section
9.3,
Exercises
page
452
Problem
number
:
16
Date
solved
:
Monday, March 31, 2025 at 08:01:57 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)+6*diff(y(t),t)+8*y(t) = piecewise(0 < t and t < 2*Pi,3,2*Pi < t,0); ic:=y(0) = 1, D(y)(0) = -1; dsolve([ode,ic],y(t),method='laplace');
ode=D[y[t],{t,2}]+6*D[y[t],t]+8*y[t]==Piecewise[{{3,0<t<2*Pi},{0,t>2*Pi}}]; ic={y[0]==1,Derivative[1][y][0]==-1}; DSolve[{ode,ic},{y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-Piecewise((3, (t > 0) & (t < 2*pi)), (0, t > 2*pi)) + 8*y(t) + 6*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {y(0): 1, Subs(Derivative(y(t), t), t, 0): -1} dsolve(ode,func=y(t),ics=ics)