Internal
problem
ID
[13587]
Book
:
Differential
Equations
by
Shepley
L.
Ross.
Third
edition.
John
Willey.
New
Delhi.
2004.
Section
:
Chapter
9,
The
Laplace
transform.
Section
9.3,
Exercises
page
452
Problem
number
:
15
Date
solved
:
Monday, March 31, 2025 at 08:01:54 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)+4*diff(y(t),t)+5*y(t) = piecewise(0 < t and t < 1/2*Pi,1,1/2*Pi < t,0); ic:=y(0) = 0, D(y)(0) = 1; dsolve([ode,ic],y(t),method='laplace');
ode=D[y[t],{t,2}]+4*D[y[t],t]+5*y[t]==Piecewise[{{1,0<t<Pi/2},{0,t>Pi/2}}]; ic={y[0]==0,Derivative[1][y][0]==1}; DSolve[{ode,ic},{y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-Piecewise((1, (t > 0) & (t < pi/2)), (0, t > pi/2)) + 5*y(t) + 4*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {y(0): 0, Subs(Derivative(y(t), t), t, 0): 1} dsolve(ode,func=y(t),ics=ics)