Internal
problem
ID
[12825]
Book
:
An
elementary
treatise
on
differential
equations
by
Abraham
Cohen.
DC
heath
publishers.
1906
Section
:
Chapter
IV,
differential
equations
of
the
first
order
and
higher
degree
than
the
first.
Article
27.
Clairaut
equation.
Page
56
Problem
number
:
Ex
5
Date
solved
:
Monday, March 31, 2025 at 07:17:01 AM
CAS
classification
:
[[_homogeneous, `class G`], _rational]
ode:=x*y(x)^2*diff(y(x),x)^2-y(x)^3*diff(y(x),x)+x = 0; dsolve(ode,y(x), singsol=all);
ode=x*y[x]^2*(D[y[x],x])^2-y[x]^3*D[y[x],x]+x==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*y(x)**2*Derivative(y(x), x)**2 + x - y(x)**3*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out