Internal
problem
ID
[12824]
Book
:
An
elementary
treatise
on
differential
equations
by
Abraham
Cohen.
DC
heath
publishers.
1906
Section
:
Chapter
IV,
differential
equations
of
the
first
order
and
higher
degree
than
the
first.
Article
27.
Clairaut
equation.
Page
56
Problem
number
:
Ex
4
Date
solved
:
Monday, March 31, 2025 at 07:11:56 AM
CAS
classification
:
[`y=_G(x,y')`]
ode:=exp(2*y(x))*diff(y(x),x)^3+(exp(2*x)+exp(3*x))*diff(y(x),x)-exp(3*x) = 0; dsolve(ode,y(x), singsol=all);
ode=Exp[2*y[x]]*(D[y[x],x])^3+(Exp[2*x]+Exp[3*x])*D[y[x],x]-Exp[3*x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Timed out
from sympy import * x = symbols("x") y = Function("y") ode = Eq((exp(3*x) + exp(2*x))*Derivative(y(x), x) - exp(3*x) + exp(2*y(x))*Derivative(y(x), x)**3,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out