Internal
problem
ID
[12762]
Book
:
An
elementary
treatise
on
differential
equations
by
Abraham
Cohen.
DC
heath
publishers.
1906
Section
:
Chapter
2,
differential
equations
of
the
first
order
and
the
first
degree.
Article
16.
Integrating
factors
by
inspection.
Page
23
Problem
number
:
Ex
2
Date
solved
:
Monday, March 31, 2025 at 07:03:15 AM
CAS
classification
:
[`y=_G(x,y')`]
ode:=(-y(x)+x*diff(y(x),x))/(x^2-y(x)^2)^(1/2) = x*diff(y(x),x); dsolve(ode,y(x), singsol=all);
ode=(x*D[y[x],x]-y[x])/Sqrt[x^2-y[x]^2]==x*D[y[x],x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x*Derivative(y(x), x) + (x*Derivative(y(x), x) - y(x))/sqrt(x**2 - y(x)**2),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out