62.9.1 problem Ex 1

Internal problem ID [12761]
Book : An elementary treatise on differential equations by Abraham Cohen. DC heath publishers. 1906
Section : Chapter 2, differential equations of the first order and the first degree. Article 16. Integrating factors by inspection. Page 23
Problem number : Ex 1
Date solved : Monday, March 31, 2025 at 07:03:12 AM
CAS classification : [[_homogeneous, `class A`], _rational, _Bernoulli]

\begin{align*} y^{2}-x y+x^{2} y^{\prime }&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 12
ode:=y(x)^2-x*y(x)+x^2*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {x}{\ln \left (x \right )+c_1} \]
Mathematica. Time used: 0.144 (sec). Leaf size: 19
ode=(y[x]^2-x*y[x])+x^2*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {x}{\log (x)+c_1} \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 0.201 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), x) - x*y(x) + y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {x}{C_{1} + \log {\left (x \right )}} \]