61.34.30 problem 30

Internal problem ID [12715]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 2, Second-Order Differential Equations. section 2.1.3-1. Equations with exponential functions
Problem number : 30
Date solved : Monday, March 31, 2025 at 06:52:17 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}+b \,{\mathrm e}^{\mu x}\right ) y^{\prime }+a \,{\mathrm e}^{\lambda x} \left (b \,{\mathrm e}^{\mu x}+\lambda \right ) y&=0 \end{align*}

Maple
ode:=diff(diff(y(x),x),x)+(exp(lambda*x)*a+b*exp(x*mu))*diff(y(x),x)+a*exp(lambda*x)*(b*exp(x*mu)+lambda)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=D[y[x],{x,2}]+(a*Exp[\[Lambda]*x]+b*Exp[\[Mu]*x])*D[y[x],x]+a*Exp[\[Lambda]*x]*(b*Exp[\[Mu]*x]+\[Lambda])*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
lambda_ = symbols("lambda_") 
mu = symbols("mu") 
y = Function("y") 
ode = Eq(a*(b*exp(mu*x) + lambda_)*y(x)*exp(lambda_*x) + (a*exp(lambda_*x) + b*exp(mu*x))*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False