61.34.20 problem 20

Internal problem ID [12705]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 2, Second-Order Differential Equations. section 2.1.3-1. Equations with exponential functions
Problem number : 20
Date solved : Monday, March 31, 2025 at 06:51:50 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+\left (a \,{\mathrm e}^{\lambda x}+b \right ) y^{\prime }+c \left (a \,{\mathrm e}^{\lambda x}+b -c \right ) y&=0 \end{align*}

Maple. Time used: 0.117 (sec). Leaf size: 135
ode:=diff(diff(y(x),x),x)+(exp(lambda*x)*a+b)*diff(y(x),x)+c*(exp(lambda*x)*a+b-c)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \,{\mathrm e}^{-c x}+c_2 \,{\mathrm e}^{\frac {-a \,{\mathrm e}^{\lambda x}-\lambda x \left (b +3 \lambda \right )}{2 \lambda }} \left (\left (-\lambda -2 c +b \right )^{2} \operatorname {WhittakerM}\left (-\frac {-\lambda -2 c +b}{2 \lambda }, -\frac {-2 \lambda -2 c +b}{2 \lambda }, \frac {a \,{\mathrm e}^{\lambda x}}{\lambda }\right )+\lambda \operatorname {WhittakerM}\left (-\frac {b -2 c +\lambda }{2 \lambda }, -\frac {-2 \lambda -2 c +b}{2 \lambda }, \frac {a \,{\mathrm e}^{\lambda x}}{\lambda }\right ) \left (a \,{\mathrm e}^{\lambda x}-b +2 c +\lambda \right )\right ) \]
Mathematica. Time used: 0.118 (sec). Leaf size: 96
ode=D[y[x],{x,2}]+(a*Exp[\[Lambda]*x]+b)*D[y[x],x]+c*(a*Exp[\[Lambda]*x]+b-c)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to (-1)^{-\frac {c}{\lambda }} c^{c/\lambda } \lambda ^{\frac {c}{\lambda }-1} a^{-\frac {c}{\lambda }} \left (c e^{\lambda x}\right )^{-\frac {c}{\lambda }} \left (c_2 (2 c-b) (-1)^{c/\lambda } \Gamma \left (-\frac {b-2 c}{\lambda },0,\frac {a e^{x \lambda }}{\lambda }\right )+c_1 \lambda \right ) \]
Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
lambda_ = symbols("lambda_") 
y = Function("y") 
ode = Eq(c*(a*exp(lambda_*x) + b - c)*y(x) + (a*exp(lambda_*x) + b)*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False