Internal
problem
ID
[12704]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
2,
Second-Order
Differential
Equations.
section
2.1.3-1.
Equations
with
exponential
functions
Problem
number
:
19
Date
solved
:
Monday, March 31, 2025 at 06:51:48 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)+(exp(lambda*x)*a-lambda)*diff(y(x),x)+b*exp(2*lambda*x)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+(a*Exp[\[Lambda]*x]-\[Lambda])*D[y[x],x]+b*Exp[2*\[Lambda]*x]*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") lambda_ = symbols("lambda_") y = Function("y") ode = Eq(b*y(x)*exp(2*lambda_*x) + (a*exp(lambda_*x) - lambda_)*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False