Internal
problem
ID
[12625]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
2,
Second-Order
Differential
Equations.
section
2.1.2-6
Problem
number
:
204
Date
solved
:
Monday, March 31, 2025 at 06:09:36 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=x*(x-1)*(x-a)*diff(diff(y(x),x),x)+((alpha+beta+1)*x^2-(alpha+beta+1+a*(gamma+d)-a)*x+a*gamma)*diff(y(x),x)+(alpha*beta*x-q)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x*(x-1)*(x-a)*D[y[x],{x,2}]+((\[Alpha]+\[Beta]+1)*x^2-(\[Alpha]+\[Beta]+1+a*(\[Gamma]+d)-a)*x+a*\[Gamma])*D[y[x],x]+(\[Alpha]*\[Beta]*x-q)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") Alpha = symbols("Alpha") BETA = symbols("BETA") Gamma = symbols("Gamma") a = symbols("a") d = symbols("d") q = symbols("q") y = Function("y") ode = Eq(x*(-a + x)*(x - 1)*Derivative(y(x), (x, 2)) + (Alpha*BETA*x - q)*y(x) + (Gamma*a + x**2*(Alpha + BETA + 1) - x*(Alpha + BETA + a*(Gamma + d) - a + 1))*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
ValueError : Expected Expr or iterable but got None