Internal
problem
ID
[12480]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
2,
Second-Order
Differential
Equations.
section
2.1.2-2
Problem
number
:
59
Date
solved
:
Monday, March 31, 2025 at 05:36:04 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(x),x),x)+(a*x^n+b*x^m)*diff(y(x),x)+(a*b*x^(m+n)+b*(1+m)*x^(m-1)-a*x^(n-1))*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+(a*x^n+b*x^m)*D[y[x],x]+(a*b*x^(n+m)+b*(m+1)*x^(m-1)-a*x^(n-1))*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") m = symbols("m") n = symbols("n") y = Function("y") ode = Eq((a*x**n + b*x**m)*Derivative(y(x), x) + (a*b*x**(m + n) - a*x**(n - 1) + b*x**(m - 1)*(m + 1))*y(x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
TypeError : Add object cannot be interpreted as an integer