61.27.48 problem 58

Internal problem ID [12479]
Book : Handbook of exact solutions for ordinary differential equations. By Polyanin and Zaitsev. Second edition
Section : Chapter 2, Second-Order Differential Equations. section 2.1.2-2
Problem number : 58
Date solved : Monday, March 31, 2025 at 05:36:01 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+\left (a \,x^{n}+b \,x^{m}\right ) y^{\prime }+c \left (a \,x^{n}+b \,x^{m}-c \right ) y&=0 \end{align*}

Maple
ode:=diff(diff(y(x),x),x)+(a*x^n+b*x^m)*diff(y(x),x)+c*(a*x^n+b*x^m-c)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=D[y[x],{x,2}]+(a*x^n+b*x^m)*D[y[x],x]+c*(a*x^n+b*x^m-c)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
a = symbols("a") 
b = symbols("b") 
c = symbols("c") 
m = symbols("m") 
n = symbols("n") 
y = Function("y") 
ode = Eq(c*(a*x**n + b*x**m - c)*y(x) + (a*x**n + b*x**m)*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
TypeError : Symbol object cannot be interpreted as an integer