Internal
problem
ID
[12040]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.3-2.
Equations
with
power
and
exponential
functions
Problem
number
:
35
Date
solved
:
Sunday, March 30, 2025 at 10:20:42 PM
CAS
classification
:
[_Riccati]
ode:=x*diff(y(x),x) = a*exp(lambda*x)*y(x)^2+k*y(x)+a*b^2*x^(2*k)*exp(lambda*x); dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],x]==a*Exp[\[Lambda]*x]*y[x]^2+k*y[x]+a*b^2*x^(2*k)*Exp[\[Lambda]*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") k = symbols("k") lambda_ = symbols("lambda_") y = Function("y") ode = Eq(-a*b**2*x**(2*k)*exp(lambda_*x) - a*y(x)**2*exp(lambda_*x) - k*y(x) + x*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (a*b**2*x**(2*k)*exp(lambda_*x) + a*y(x)**2*exp(lambda_*x) + k*y(x))/x cannot be solved by the factorable group method