Internal
problem
ID
[12039]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.3-2.
Equations
with
power
and
exponential
functions
Problem
number
:
34
Date
solved
:
Sunday, March 30, 2025 at 10:20:36 PM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x),G(x)]`], _Riccati]
ode:=diff(y(x),x) = a*exp(lambda*x)*(y(x)-b*x^n-c)^2+b*n*x^(n-1); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==a*Exp[\[Lambda]*x]*(y[x]-b*x^n-c)^2+b*n*x^(n-1); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") lambda_ = symbols("lambda_") n = symbols("n") y = Function("y") ode = Eq(-a*(-b*x**n - c + y(x))**2*exp(lambda_*x) - b*n*x**(n - 1) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out