Internal
problem
ID
[12032]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
subsection
1.2.3-2.
Equations
with
power
and
exponential
functions
Problem
number
:
27
Date
solved
:
Sunday, March 30, 2025 at 10:19:48 PM
CAS
classification
:
[_Riccati]
ode:=diff(y(x),x) = a*exp(lambda*x)*y(x)^2-a*b*x^n*exp(lambda*x)*y(x)+b*n*x^(n-1); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==a*Exp[\[Lambda]*x]*y[x]^2-a*b*x^(n)*Exp[\[Lambda]*x]*y[x]+b*n*x^(n-1); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") lambda_ = symbols("lambda_") n = symbols("n") y = Function("y") ode = Eq(a*b*x**n*y(x)*exp(lambda_*x) - a*y(x)**2*exp(lambda_*x) - b*n*x**(n - 1) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE a*b*x**n*y(x)*exp(lambda_*x) - a*y(x)**2*exp(lambda_*x) - b*n*x**(n - 1) + Derivative(y(x), x) cannot be solved by the lie group method