Internal
problem
ID
[12005]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
1.2.2.
Equations
Containing
Power
Functions
Problem
number
:
78
Date
solved
:
Sunday, March 30, 2025 at 10:14:18 PM
CAS
classification
:
[[_homogeneous, `class D`], _rational, _Riccati]
ode:=(a*x^n+b*x^m+c)*(-y(x)+x*diff(y(x),x))+s*x^k*(y(x)^2-lambda*x^2) = 0; dsolve(ode,y(x), singsol=all);
ode=(a*x^n+b*x^m+c)*(x*D[y[x],x]-y[x])+s*x^k*(y[x]^2-\[Lambda]*x^2)==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") k = symbols("k") lambda_ = symbols("lambda_") m = symbols("m") n = symbols("n") s = symbols("s") y = Function("y") ode = Eq(s*x**k*(-lambda_*x**2 + y(x)**2) + (x*Derivative(y(x), x) - y(x))*(a*x**n + b*x**m + c),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out