Internal
problem
ID
[12004]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
1.2.2.
Equations
Containing
Power
Functions
Problem
number
:
77
Date
solved
:
Sunday, March 30, 2025 at 10:11:52 PM
CAS
classification
:
[_rational, _Riccati]
ode:=(a*x^n+b*x^m+c)*diff(y(x),x) = alpha*x^k*y(x)^2+beta*x^s*y(x)-alpha*lambda^2*x^k+beta*lambda*x^s; dsolve(ode,y(x), singsol=all);
ode=(a*x^n+b*x^m+c)*D[y[x],x]==\[Alpha]*x^k*y[x]^2+\[Beta]*x^s*y[x]-\[Alpha]*\[Lambda]^2*x^k+\[Beta]*\[Lambda]*x^s; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") Alpha = symbols("Alpha") BETA = symbols("BETA") a = symbols("a") b = symbols("b") c = symbols("c") k = symbols("k") lambda_ = symbols("lambda_") m = symbols("m") n = symbols("n") s = symbols("s") y = Function("y") ode = Eq(Alpha*lambda_**2*x**k - Alpha*x**k*y(x)**2 - BETA*lambda_*x**s - BETA*x**s*y(x) + (a*x**n + b*x**m + c)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out