Internal
problem
ID
[11968]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
1,
section
1.2.
Riccati
Equation.
1.2.2.
Equations
Containing
Power
Functions
Problem
number
:
41
Date
solved
:
Sunday, March 30, 2025 at 09:29:47 PM
CAS
classification
:
[_rational, _Riccati]
ode:=x*diff(y(x),x) = x^(2*n)*y(x)^2+(m-n)*y(x)+x^(2*m); dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],x]==x^(2*n)*y[x]^2+(m-n)*y[x]+x^(2*m); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") m = symbols("m") n = symbols("n") y = Function("y") ode = Eq(x*Derivative(y(x), x) - x**(2*m) - x**(2*n)*y(x)**2 - (m - n)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (m*y(x) - n*y(x) + x**(2*m) + x**(2*n)*y(x)**2)/x cannot be solved by the factorable group method